Analysis of Local Data Patterns by Local Adaptive Color Mapping
نویسندگان
چکیده
Color, after position, is among the most effective visual variables to encode information. It is pre-attentively processed by the visual system, and if used appropriately, supports detection and correlation of patterns. Several global color mapping schemes (such as linear, non-linear and histogram-based) exist that support certain analysis tasks. However, static global schemes map data with a small local variation (within a data set of high variation) to small color differences. Often, these color differences are below the noticeable difference threshold of user perception or the display device. As a consequence, valuable information may be lost since data points or structures cannot be adequately perceived and correlations or other patterns of interest may be missed. Existing techniques to avoid this effect either require user interaction or are based on specific assumptions about the data. We introduce a novel automatic algorithm for local-adaptive color mapping that is applicable to dense data and is based on the idea to locally modify the color mapping to enhance the visibility of structures. This technique emphasizes patterns of interest within locally chosen color-ranges such that (1) the visibility of local differences is enhanced and (2) the introduced global distortion of the color mapping is kept small. This allows the perception of relevant patterns while approximately maintaining global comparability across the whole data set.
منابع مشابه
Local gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملAutomatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method
Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...
متن کاملColor Image Segmentation using Fuzzy Local Texture Patterns
Texture is one of the fundamental image characteristics useful in computer vision tasks such as object recognition and scene analysis. Texture segmentation is one of the image analysis tasks. The prospect of texture segmentation depends on the choice of the texture description method and the segmentation procedure. In this paper, color-texture descriptors are proposed to represent the texture c...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملCognitive mapping concept of resource management for the viability of local communities
The local community is a complex socio-economic system, and its ability to function for an indefinitely long period of time (viability) is not investigated sufficiently today. The purpose of the research was, using the cognitive mapping, propose to the local community management developing their own management strategies to ensure its viability. Considering the weakly structured subject area of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014